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We confute logical relativism and forward an alternative epistemological thesis 
according to which nonstandard "truth-theories" are considered theories of some 
metalinguistic concepts which do not coincide with truth, this latter concept being 
exhaustively described by Tarski's truth theory. We illustrate our viewpoint by 
showing that quantum logics can be interpreted as quantum physical theories of 
the metalinguistic concept of testability in the framework of a suitable classical 
language (with Tarskian semantics). 

1. INTRODUCTION 

Many nonclassical logics have been constructed since Brouwer's propo- 
sal of intuitionistic logic. Presently, we have nonclassical two-valued logics, 
three-valued logics, infinite-valued logics. Among these, quantum logic (QL) 
has a privileged role, since it is suspected to be the basic logical apparatus 
underlying quantum physics (QP). 

Every nonstandard logic can be supposed to subtend a nonclassical 
truth theory, so that we have nonclassical two-valued truth theories, many- 
valued truth theories, fuzzy truth theories, and so on. This proliferation of 
truth theories strongly favors philosophical relativism regarding the concept 
of truth; yet, it has been considered by many authors [in particular, by 
Putnam (1979)] as an achievement comparable with the discovery of non- 
Euclidean geometries. 

I do not agree with this viewpoint; indeed, I think that logical theories 
and specific theories (like geometries) have different epistemological statuses, 
and that the belief in the relativity of logic is exposed to many relevant 
philosophical and epistemological objections. 
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I would like to discuss briefly these objections in the first part of this 
paper and to present an epistemological alternative. According to this, every 
nonclassical "truth theory" actually is a theory of some metalinguistic con- 
cept which is different from the concept of truth, while the properties of 
truth are exhaustively described by the Tarski truth theory, hence by classical 
logic (CL). 

This viewpoint can be supported by two examples at least. First, it has 
recently been proved by Dalla Pozza (1991) that the intuitionistic theory of 
truth can be interpreted as a theory of the pragmatic concept of justification. 
Second, the "truth theory" underlying QL can actually be interpreted as a 
theory of the pragmatic concept of testability in QP (which is different from 
the classical concept of truth) by making use of the results which I have 
obtained in a recent paper (Garola, 1991). 

QL, of course, is the main topic in this conference. Thus, I will try to 
illustrate the latter example in the second part of this paper by showing that 
the formulas of QL can be interpreted as subsets of testable formulas of a 
classical language with Tarskian semantics and that the structure properties 
of QL can be interpreted as properties of the concept of testability in QP. 

For brevity's sake I will make considerable use of intuitive arguments 
and short-cuts, and only sketch the scheme which can be followed when a 
rigorous treatment of the subject is desired; each step of the scheme can 
actually be made with the aid of the paper quoted above, 

As an immediate consequence of my discussion, it follows that a non- 
classical logic is not strictly needed in QP, which agrees with the opinion of 
many theorists (in particular, those belonging to the Geneva school), but is 
opposite to the beliefs of other theorists and logicians (see, for instance, 
Jammer, 1974; Holdsworth and Hooker, 1983). 

2. A NEW EPISTEMOLOGICAL PERSPECTIVE 

I would like to underline first some basic notions about formal lan- 
guages and their interpretations in order to make my arguments and my 
thesis clearer. 

The noun "formal language" is usually intended to denote a pair L = 
( d ,  q~), with d and alphabet, i.e., a set of symbols classified according to 
syntactic categories (e.g., descriptive, logical, auxiliary symbols) and qJ a set 
of well-formed formulas (briefly, wffs) constructed by means of the symbols 
in d and of suitable formation rules. 

Whenever a formal language L has been constructed, the problem 
occurs of endowing it with an effective semantical interpretation. A first step 
in this direction can be made by providing a formal semantical interpretation 
for L, i.e., a triple J / =  (@, p, 3-'), where ~ is an abstract set called domain, 
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or universe, p is an assignment function which makes every primitive descrip- 
tive symbol of L correspond to a suitable entity in ~ (precisely, p maps 
every individual constant of L on an element in ~ and every n-adic predicate 
of L onto a suitable subset of ~"), and ~-- is a truth theory where the concepts 
of truth, validity (or logical truth), and logical consequence are (recursively) 
defined. The formal interpretation ~/yields a complete interpretation of the 
logical symbols in L, defines exhaustively the concept of logical truth, and 
represents a regulative criterion to which any effective semantical interpreta- 
tion must conform (Thomason, 1974). 

If a formal semantical interpretation is provided, an effective interpreta- 
tion can be obtained by suitably mapping a fragment F of the natural 
language on L; then the formal language L with the formal semantical 
interpretation Jr' is said to be adequate to F whenever such a mapping exists 
(it is obviously required that the semantics of F be compatible with the 
formal semantics defined in L). 

It is well known that the truth theory in the above procedure can be 
substituted, under the assumption that some completeness requirements are 
satisfied, by a suitable formal calculus c~, i.e., by a pair (A, R), where A is 
a set of logically true formulas of L, called logical axioms, and R is a set of 
primitive inference rules. Whenever the theory ~-- is given, the formal semant- 
ical interpretation uniquely determines (up to logical equivalence) the cal- 
culus rg and, conversely, whenever the calculus c~ is assigned in place of Y,  
a truth theory is induced in such a way that Jr  is a model for rg. 

Let us now consider the existing formal semantical interpretations. Of 
course a standard truth theory, hence a standard logical calculus, exists: the 
Tarskian truth theory, which subtends the formal calculus of classical logic. 
Yet, many truth theories and calculi have been proposed which are not 
logically equivalent to the classical ones, thus yielding nonstandard formal 
semantical interpretations. Furthermore, it has been proved that effective 
interpretations actually exist of languages endowed with these nonclassical 
formal interpretations. Thus, the widespread opinion arises that the concept 
of truth may change with the fragment of the natural language, the classical 
concept being only one of the possible ones. 

Besides, one can reason as follows. It is well known that the set of 
axioms and inference rules of 5, or the truth theory in ~/, define a poset 5e 
(usually, a lattice, called the algebra of the propositions of L) whose elements 
are classes of logically equivalent wffs of L. Whenever a fragment F of the 
natural language is mapped onto L, this structure could be said to formalize 
properties of the concept of truth in F; hence, if L bears a nonstandard 
formal semantical interpretation, ~ illustrates the differences between the 
concept of truth underlying F and the classical concept (whose properties 
are formalized by a Boolean algebra of propositions). 
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The above point of view, which strongly supports the thesis of the 
"locality of logic" that has been defended by many authors (e.g., Dalla 
Chiara, 1974), is exposed to some relevant philosophical objections. First, 
it implies that the logical apparatus which underlies a given theory may 
depend on the theory itself, since the latter selects the fragment F of the 
natural language by means of which it is expressed; thus, we have no "ration- 
ality principle" which allows a preliminary choice between theories on the 
basis of external criteria like "consistency" of "coherence," and any theory 
can, in principle, justify itself. Second, it involves the fact that no rule for 
selecting admissible languages and calculi can be given, since for any formal 
language L endowed with a nonstandard formal semantical interpretation it 
cannot be excluded in principle that a fragment F of the natural language 
can be found such that L is adequate to F. In addition, the thesis of locality 
of logic often leads to identifying different truth modes, like the truth modes 
of logical and physical laws, since it is naturally linked to the thesis that 
"logic is empirical" (e.g., Putnam, 1969; Finkelstein, 1979a,b; Drieschner, 
1977), though it does not coincide with it; furthermore, it may also engender 
some nontrivial problems of compatibility whenever overlapping fragments 
of the natural language are mapped onto inequivalent languages. 

However, the thesis that different concepts of truth underlie different 
theories only constitutes a possible viewpoint. I intend to forward here the 
following alternative thesis which seems to overcome the above philosophical 
objections: the different algebraic structures that are induced by nonclassical 
formal semantical interpretations formalize properties of metalinguistic con- 
cepts that do not coincide with the concept of  truth whose formal properties 
are exhaustively expressed by Tarski' s truth theory. If this thesis is accepted, 
every non-Tarskian "truth theory" will be considered as a theory regarding 
a metalinguistic concept, different from truth (like the concept of testability, 
whose relevance in physics will be discussed in the sequel) in the framework 
of a classical language (possibly extended). 

This epistemological position finds its ancestors in Carnap (1949, 1966), 
Popper (1969) and in the principle by Quine (1970), "change of logic, change 
of subject." It entails a rather radical change in perspectives with respect to 
some current lines of thought in nonstandard logics and its consequences 
are far-reaching. For instance, it implies that different algebraic structures 
can coexist in the same theory, so that, in particular, the logical apparatus 
of a given theory does not necessarily depend on the theory itself; indeed 
the nonstandard structures induced by the theory can be interpreted as 
expressing formal properties, inside the theory, of some specific metalinguis- 
tic concept, while the formal properties of the truth concept remain un- 
altered. Furthermore, our viewpoint allows a classification of nonstandard 
languages, which can be classified according to the metalinguistic concept 
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formalized by means of their algebraic structure. Finally, it is apparent that 
the analysis of the truth modes of different kinds of laws is not affected by 
the existence of distinct algebraic structures which formalize the properties 
of concepts which are different from the concept of truth. 

It is also interesting to note that the above thesis induces a particularly 
interesting suggestion for our purposes in the present paper. Let us consider 
some distinct formal languages, say Lj, L2 . . . . .  Ln, endowed with nonstan- 
dard formal semantical interpretations which are not requested to be log- 
ically equivalent, and let FI, F2, � 9  F, be fragments of the natural language 
that can be regimented onto L1, L2 . . . . .  L,,  respectively. One can imagine 
that a formal language L can be constructed, endowed with a standard 
formal semantical interpretation, onto which a fragment F of the natural 
language can be regimented which embodies F1, F 2 , . . . ,  Fn. Then, the alge- 
braic structure of L is classical, the fragments/~, F 2 , . . . ,  F, can be consid- 
ered as obtained by choosing in F sets of statements possessing some suitable 
metalinguistic property (testability, provability, etc.) which can be different 
for different fragments, and the algebraic structure on any fragment (which 
might have nothing in common with that of L) can be regarded as formaliz- 
ing properties of the metalinguistic concept used in selecting the fragment 
itself. 

Let us come now to a second epistemological thesis, which is secondary 
to the previous one, but relevant for our purposes. More precisely, if we 
accept the above perspectives, we are naturally led to look for metalinguistic 
concepts which are philosophically prominent and can play a role in deter- 
mining nonclassical structures within the framework of classical languages. 
Whenever we direct our attention at physics, the concept of testability (also, 
epistemic accessibility) immediately seems to be a suitable candidate: it 
suffices to think that QP has been constructed since the very beginning by 
identifying the semantical concept of meaning and the pragmatic concept 
of testability, and rejecting as "physically meaningless" every nontestable 
statement. 

Thus, we claim that the concept of  testability plays a fundamental role 
in every physical theory, since every physical theory embodies a theory of 
testability (possibly implicit) which selects the set of  all the interpreted for- 
mulas (or "statements") considered to be testable (at least in principle) in the 
set of  all the formulas belonging to the language of the theory. Consequently, 
the physical laws are accepted or rejected according to their success in pre- 
dicting the truth values of  testable statements, while the prediction of  the truth 
values of  nontestable statements is usually considered irrelevant by physicists. 

It should be noted that a number of important consequences occur 
whenever this perspective is adopted. First, truth and testability do not 
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necessarily coincide (this will be confirmed by the particular case of QL), 
though they may coincide in special theories, so that we are led to reject the 
early neopositivistic verification theory of meaning. Second, we obtain that, 
in every physical theory, the set of statements which are testable is a subset 
(usually proper) of the set of all formulas which are endowed with a truth 
value. Third, we expect that the properties of the concept of testability are 
theory-dependent (while those of the concept of truth should be theory- 
independent according to our viewpoint). Fourth, the classical problem of 
the completeness of a physical theory can be reformulated by saying that 
the theory is t-complete if it determines the truth values of all the interpreted 
wffs that the theory itself classifies as testable, while it is s-complete if it 
determines the truth values of all the interpreted wffs in the language of the 
theory; it is then apparent that s-completeness (which coincides with the 
standard notion of completeness) is not relevant from a physicist's point of 
view. 

3. CLASSICAL FOUNDATIONS OF QUANTUM LOGICS 

Let us now consider QL. In this case it is usually assumed that the 
formal language, whatever it may be, must be endowed with a nonclassical 
formal semantical interpretation (or calculus) whose algebra of propositions 
has the properties suggested by a number of existing axiomatized or semi- 
axiomatized approaches to the foundations of QP, i.e., it is a complete, 
orthocomplemented, weakly modular, atomic lattice which also satisfies the 
covering law. Thus, it seems obvious to assert that a quantum concept of 
truth exists which is different from the classical one, which is retained to 
underlie classical physics (CP). Yet this position is exposed to the objections 
debated before. In addition, some effective semantical interpretations result- 
ing from this assumption seem to be anomalous if compared with the effec- 
tive interpretation provided by foundational physicists for their algebraic 
structures. 

By applying our previous arguments in particular to QL, we see that 
these difficulties do not occur if one accepts the alternative point of view 
introduced in this paper: in this case, the algebraic structure of QL is thought 
of as formalizing properties of a metalinguistic concept which does not 
coincide with the concept of truth. Moreover, we are naturally led to guess 
that the concept of testability or some suitable refinement of it is the required 
concept. 

I want to discuss here whether this conjecture is true; to be precise, I 
intend to show that the algebraic structure of QL can be obtained as an 
empirical structure which formalizes properties of the pragmatic concept of 
testability in QP in the framework of a suitable classical language. 
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In order to obtain this result, a complete treatment could be carried out 
according to the following scheme. 

(a) Construction of a formal language L, suitably extended by means 
of new operators and/or quantifiers. 

(b) Assignment of a formal semantical interpretation ~ '  of L, which 
constitutes a model-theoretic semantics for L, embodying a classical 
truth theory. 

(c) Assignment of an effective semantical interpretation of L which 
conforms to the regulative criteria established by the formal semant- 
ical interpretation and makes L suitable for expressing the basic 
concepts and laws of  QP. 

(d) Statement of the basic laws of QP by means of formulas (or schemes 
of formulas) of L. 

(e) Construction of one (or more) formal language Lq endowed with 
an effective interpretation which induces the algebraic structure of 
QL on the set ~q of all the wffs of Lq (hence it subtends a nonclass- 
ical "truth theory"). 

(f) Translation r of Lq into L which maps the set ~q into a subset 
r(~q) of wffs of L, in such a way that the effective interpretation 
of Lq is preserved (the translation will be weak, in the sense that 
the interpretation of the logical signs is not necessarily preserved). 

(g) Proof that the mathematical structure induced by the laws of QP 
on r(~q) can be identified (up to suitable homomorphisms) with 
the quantum logical structure of ~q. 

(h) Proof (via the effective interpretation) that the metalinguistic con- 
cept of testability (or some appropriate refinement of it) actually 
characterizes the subset "t'(tIJq). 

(i) Interpretation of the structure properties of ItI/q as properties in QP 
of the (refined) concept of testability. 

This program has actually been realized in the paper quoted above 
(Garola, 1991), apart from some minor changes. However, this approach is 
exceedingly complicated because it aims to be self-consistent and wants to 
treat a number of topics during the preparation of the basic tools for translat- 
ing "quantum logics" into L. Indeed, (i) L is enlarged by introducing a 
new family of quantifiers (the statistical quantifiers) so that statements on 
conditional frequencies can be suitably formalized in L; (ii) the concept of 
physical laboratory is formalized and used in order to characterize the truth 
modes of different classes of laws (logical, analytical, physical) in our frame- 
work; (iii) a distinction between probabilistic and frequential statements is 
introduced, and a general principle is stated which allows us to translate a 
probabilistic statement into a frequential statement with a known degree of 
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approximation; (iv) some relevant physical assumptions are made explicit 
that are implicit both in CP and in QP; (v) new characterizations of pure 
states and fuzzy properties are obtained; (vi) many-valued QL is recovered, 
together with two-valued QL, in a classical framework; (vii) CP is suitably 
characterized and the difference between CP and QP is discussed; and (viii) 
some hints are given for solving classical "paradoxes" in QP. 

If these topics are ignored and some plausible additional assumptions 
are accepted, we can restrict ourselves to a simplified classical language Lc, 
and the arguments in the aforesaid approach can be greatly simplified and 
schematized, even if we lose generality and conceptual rigor. 

I will briefly deal with this simplified treatment here in order to give an 
intuitive insight into the problem. 

4. A CLASSICAL LANGUAGE FOR QUANTUM LOGIC 

Let us concretely build up the simplified classical language Lc. We 
assume that Lc is a language of a classical first-order predicate logic, with 
alphabet d c  and set of well-formed formulas (wffs) ~Fc. The alphabet d c  
contains the following descriptive signs. 

(a) Individual variables: x, y . . . . .  
(b) Monadic predicative constants, divided into two classes: (i) sym- 

bols of state: S, S j , S 2 , . . .  ; (ii) symbols of exact effect: 
O, 1, E, E1,E2 . . . . .  

Furthermore, d~  contains the standard connectives --a, ^ ,  v ,  ~ ,  and 
and quantifiers 9, u of CL. Finally, the auxiliary signs in d~ are limited 

to round parentheses. 
Then, Wc is obtained by means of the signs in d~ and of the standard 

formation rules of the classical predicate logic. In addition, we denote the 
sets of (individual) variables, symbols of state, and symbols of exact effect 
by the metalinguistic symbols X, ~ ,  and 8z, respectively, in the following. 

As we have assumed at the beginning that Lc is a language of a classical 
(first-order) predicate logic, the standard classical semantics for this kind of 
logic holds true. Therefore, the logical symbols in ~ bear the standard 
logical interpretation and the binary relations of logical quasiorder c and 
log!cal equivalence - are defined on W~. The quotient set W~/-  can then 
be endowed with the partial order induced on it by c ,  which we still denote 
by c ,  and the poset (Wc/--, c )  is a Boolean lattice (the algebra of the 
propositions, or Lindenbaum-Tarski algebra, of Lc). 

We endow the descriptive symbols in ~ with an effective interpretation, 
as follows. We preliminarily convene that bold symbols denote metalinguistic 
variables in the sequel. Then, we introduce a set I of laboratories, whose 
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elements are interpreted as finite space-time domains which are physically 
equivalent, and to every i e I  we associate a domain ~j whose elements are 
interpreted as physical objects (i.e., individual physical systems). Now, we 
assume that any interpretation ~y of the individual variables maps every 
individual variable into a physical object in every laboratory iEL Further- 
more, the symbols of state are interpreted, following Ludwig's (1983) inter- 
pretation, as nouns of classes whose elements are physically equivalent 
preparations; then, in every laboratory i~I, every symbol of state S~6 e is 
associated to a subset p;(S) of ~i ,  called extension of  S in i, which is inter- 
preted as the set of all physical objects that are actually prepared in i accord- 
ing to any preparation in the class denoted by the symbol S. Analogously, 
the symbols of exact effect are interpreted, again following Ludwig (1983), 
as nouns of classes whose elements are physically equivalent dichotomic 
registering devices, each of which exactly tests whether a given physical 
property can be attributed to the physical object that we want to examine; 
then, in every laboratory i~/, every symbol of exact effect E E ~ is associated 
to a subset pi(E) of ~i,  called extension of  E in i, which is interpreted as 
the set of physical objects in i that would give a positive answer if tested 
with any of the registering devices collected in the class denoted by the 
symbol E. 

It should be carefully noted that the extension of a symbol of state is 
an actual set of physical objects according to the above definition; on the 
contrary, the extension of a symbol of exact effect is apotential set of physical 
objects. This difference, which characterizes our approach, has some relevant 
epistemological and technical consequences. Indeed, it implies that physical 
objects, on which measurements can be performed, are actually produced in 
every laboratory; yet their properties are considered theoretical expectations, 
not a real outcome of registering procedures, though actual measurements 
could be made, if desired. This avoids, in particular, any problem with "state 
changes induced by measurements." In addition, our definition of extension 
implies that the set of all extensions of symbols of state in a laboratory i is 
a partition on ~t,  so that the set of all preparations is not endowed with the 
structure type "selection procedure" as in the Ludwig approach. 

5. TESTABILITY AND QUANTUM LOGIC 

We have constructed and interpreted the classical language Lc. In order 
to fulfill our program, we are interested in singling out sets of formulas in 
Lc which correspond to physical statements that can actually be tested, if 
desired, that is, sets of testable formulas of L~. In our framework, this is the 
same as saying that we are looking for sets of formulas whose truth value 
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can be concretely determined by means of the registration devices introduced 
in the effective semantical interpretation of Lc. 

Let us assume that an interpretation tr of  the individual variables is 
assigned such that every x e X  is interpreted in every laboratory ieI on a 
given physical object. Then, it is apparent that at least the following two 
subsets of  formulas are testable in the above sense. 

(a) All the atomic formulas that can be obtained by substitution in the 
metalinguistic scheme of formulas E(x), where E ranges over the symbols 
of  exact effects in ge  and x ranges over the individual variables in X. Indeed, 
any formula of this kind, say E(x), can be interpreted as follows: 

"the physical object denoted by x has the property tested by the exact 
effect denoted by E "  

which obviously is a testable wff in every laboratory. 
(b) All the molecular formulas that can be obtained by substitution in 

the metalinguistic scheme of formulas (Vx)(S(x) --. E(x)), where S ranges 
over the symbols of  states in 6 ~, E ranges over the symbols of exact effects 
in o~e, and x ranges over the individual variables in X. Indeed, any formula 
of this kind, say (Vx)(S(x)~ E(x)), can be interpreted as follows: 

,every physical object that is prepared according to the state denoted 
by S has the property tested by the exact effect denoted by E "  

which is a testable wff in every laboratory, since the number of physical 
objects prepared according to a given state is necessarily finite, though it 
may be quite large. 

It should be noted that the formulas in these two subsets are not testable 
in the same sense. In the former set, a single test is required in order to 
determine the truth value of a given statement, but simultaneous testability 
is generally prohibited. In the latter, a number of tests is required in order 
to obtain the truth value of any statement, but one can prove (Garola, 1991), 
under reasonable assumptions, that the truth values of different statements 
can always be determined simultaneously. This suggests that the two sets 
can be distinguished by means of suitable refinements of the concept of 
testability, but we do not insist on this point here, for brevity's sake. 

It is also apparent that the above subsets can be immediately enlarged 
by noticing that every wff which is logically equivalent to a testable wff is 
also testable. 

Let us assume now that the metalinguistic variables x and S are substi- 
tuted by a specific individual variable, say x, and a specific symbol of state, 
say S, respectively, and let us denote the sets ofwffs oftFc which are obtained 
in this case from the metalinguistic schemes E(x) and (Vx)(S(x) ~ E(x)) by 
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�9 ~ and ~s ,  respectively. Furthermore, let us denote by W7 the set of wffs of 
u/c which are logically equivalent to a formula at least in ~7, and by W s the 
set of wffs of Wc which are logically equivalent to a formula at least of t} s 
(hence, trivially, ~___ U/~ and ~c ---u/c).s s 

The sets U/7 and u/s are endowed with structure properties that are 
crucial in our approach since some of them can be interpreted as properties 
of the concept of testability in QP. 

Let us begin with the logical structures of U/~ and u/s. Each of these 
subsets is endowed with the quasiorder relation c induced on it by restric- 
tion of the logical quasiorder c defined on u/c, and by a canonical "logical" 
equivalence relation = induced by c ;  furthermore, c induces on U/~/= 
and u / s /=  two order relations, which we still denote by c .  Let us consider 
the posets (u/F/=, c ) and (u/s/=_, c ) .  It is apparent that they are subposets 
of the Boolean lattice (U/ J= ,  c ) ;  nevertheless, they are not necessarily 
sublattices of (u/c/=, c )  and, whenever they are lattices, they are not 
necessarily Boolean. It is also evident that no further information about 
(U/7/=, c )  and (u /s /= ,  c )  can be obtained by means of purely logical 
arguments. 

Let us come to the empirical structures of U/~ and u/s. Our investigation 
of these structures requires a preliminary examination of the semantical 
relations between the exact effects in the framework of a given physical 
theory. Now, it is easy to see that both in CP and in QP the set Ce can be 
endowed with an empirical partial order -< by setting 

�9 for every El, E2E~E, 

EI~(E2 iff for every laboratory i, pi(E~)_ pi(E2) 

This partial order relation is endowed with properties that hold true in 
both theories; to be precise, a set of plausible physical assumptions can be 
made which imply that (de, ~() is a complete orthocomplemented atomic 
lattice in both cases. Then, further assumptions can be introduced which 
differentiate CP from QP. However, the discussion of all these assumptions 
is lengthy and requires nontrivial technical tools. Since we aim at simplicity 
here, we choose a more direct way in order to endow (8~, -() with a suitable 
structure. More precisely, standing on the effective interpretation of o~e, 
we identify the poset (g~e, "(), up to isomorphisms, with Piron's lattice of 
propositions, or Mackey's lattice of questions, or Ludwig's lattice of decision 
effects [indeed, these structures can be considered isomorphic; see Garola 
and Solombrino (1983)]. Then, (r ~() turns out to be a complete, ortho- 
complemented, atomic lattice, which is distributive in CP, orthomodular, 
and satisfies the covering law in QP. 
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Let us consider now q'~ and q,s. By definition of ~F~, every wff 
A(x)e~7 is logically equivalent to an atomic wit EA(x)eO~, with EA ~ge. 
Hence the mapping 

co"~: A(x)E~F~--.EAer 

maps ~7 onto ge. Analogously, every A(S)e qjs is logically equivalent to a 
molecular wff (Vx)(S(x)  ~ EA(x))e~F s, with E A ESe. Hence the mapping 

ogS: A ( S ) ~ W s - - . E A e ~  e 

maps U s onto gE. Consequently, the empirical partial order <( defined on 
ge induces, via c0 x and co s, a quasiorder relation both on qJ~ and U s, and 
a partial order relation both on ~F~/= and ~Fs/= (we must remember that 
the symbol = denotes logical equivalence); in order to avoid the use of too 
many symbols, all these relations will still be denoted by < .  It is then 
apparent that the posets (~t'~/=, -<) and (~Fs/- ,  <() are order isomorphic 
to (ge, <~). Thus, we conclude that they also are complete orthocomple- 
mented atomic lattices which are distributive in CP, orthomodular, and 
satisfying the covering law in QP. 

This result is the basic one in our approach, and it is sufficient in 
affirming that we have attained our goals. Indeed, it shows that the lattices 
(tI'~/=, < )  and ( u s / = ,  -<) are endowed with the mathematical properties 
required for QL in QP. Furthermore, because of the interpretation supplied 
for the formulas in W7 and U s, the "propositions" which are elements of 
~Fx/=, or ~Fs/----, can be endowed with two semantical interpretations, 
respectively, which are known possible interpretations of the propositions 
of QL. Thus, we can say that we have recovered quantum logical structures 
within a classical framework with extensional semantics. 

Of course, the quasiorder relation -< on W~, or qjs, is determined by 
empirical laws of physics (CP or QP) in our context; since ~F7 and U s have 
been selected as subsets of testable formulas of Lc, we can say that the 
properties of this quasiorder relation in CP or QP formalize properties of 
the metalinguistic concept of testability within CP or QP. Thus, the mathe- 
matical properties of QL can be interpreted in terms of testability in QP, as 
desired (from this viewpoint, QL should be probably better classified as 
"pragmatics"). 

I would like to close this section by pointing out that I have not dis- 
x _ _  S _ _  cussed the links between the logical order c on We/=,  or qJc/=,  and the 

empirical order -< defined on the same subset. Since I have not explicitly 
exposed here the physical assumptions which justify the lattice structure of 
(Be, -<), I cannot formulate a detailed analysis of these links. Nevertheless, 
it is intuitively clear from the definition of ~( that -< and c coincide on 
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tg~/= .  On the contrary, the order -< is actually stronger on tFS/= than the 
order c .  

6. CONCLUSIONS 

Let us end with some further remarks which show the epistemological 
relevance of  our results and indicate some possible applications. 

(a) It follows from our discussion that QL is isomorphic to mathemati- 
cal structures whose basic axioms have the truth mode of  physical rather 
than logical laws if a suitable interpretation is given. According to our 
viewpoint, these structures are selected by the concept of testability, which 
is theory-dependent. 

(b) QL is recovered in the framework of CL, which suggests that a 
nonstandard logic is not needed in QP. 

(c) The basic classical language for QL may be endowed with exten- 
sional semantics, so that modal extensions of CL are not strictly needed and 
the introduction of possible worlds can be avoided. 

(d) Two algebraic structures have been obtained, i.e., (~F~/-,  -<) and 
(~Fs/~,  ~<), which are isomorphic to QL in QP and are endowed with 
distinct interpretations. Thus, QL splits into different syntactical structures, 
each of  which has a different interpretation. 

(e) The statements in ~F~ and ~F s, respectively, regard individual phys- 
ical systems (referred to as "physical objects") and a class of individual 
physical systems (the physical objects that "are in the state denoted by S") .  
The clear a priori  distinction on the syntactical level between these kinds of 
statements in our approach is relevant from an epistemological viewpoint 
not only because it establishes a one-to-one correspondence between syntax 
and semantics, but also because many antinomies in QP may derive by 
confusing the individual statements in ~F~ and the class statements in ~F s. 
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